Problem Solving

Summary:

If an object is at rest or moving with a constant velocity, forces are balanced, $\vec{a} = 0$ so and $\vec{z} = 0$ If an object is accelerating, forces are not balanced, $\vec{z} = \vec{r}$ (net force) causes \vec{a} (acceleration) Problem Solving Process/Format: 1. Draw Picture, define $\vec{+}$ and - direction 2. Draw FBD 3. Write the equation $\vec{z} = \vec{r} = \vec{n} \vec{a}$ and plug 4. in the forces from your FBD 4. Decide if $\vec{a} = 0$ or not 5. Use algebra to solve for desired variable

Problems with gravity and the normal force

Ex 1) A 10.0 kg box sits at rest on the table. How large is the normal force on the box?

+

$$\sum F = ma$$

 $+ F_N - F_g = mar 0$ (balanced)
 $+ F_N - F_g = mar 0$ (balanced)
 $+ F_N - F_g = mar 0$ (balanced)
 $+ F_N - 98N = 0$
 $= (10 \text{ kg})(9.8\%2)$
 $= 98N$
 $F_N = 98N$

Ex 2) If you push DOWN on the box with a 40.0 N force, now how large is the normal force?

+
$$F_{N}$$
 $F_{A} = 40N$
 $F_{g} = 98N$
 $(e \ge 1)$
 $F_{N} = 138N$
* Normal Force
 $Can change!$

Ex 3) If you pull UP on the box with 40.0 N, how large is the normal force?

$$F_{N} = \frac{F_{N}}{F_{g}} = \frac{F_{N}}{F_{g}} = \frac{F_{N}}{F_{g}} = \frac{F_{N}}{F_{g}} = \frac{F_{N}}{F_{g}} = \frac{F_{N}}{F_{N}} = \frac{$$

Ex 4) What happens if you pull UP on the box with 100.0 N?

Solving Force Problems Involving Angled Vectors

Net force is a VECTOR sum...

What is the net force on the box (viewed from above)? Assume no friction.

$$F_{1} = 100N$$

$$F_{1} = F_{2} = 100N$$

$$F_{1} = F_{2} = F_{1} + F_{2}$$

$$F_{2} = F_{1} + F_{2}$$

$$F_{1} = F_{2} = F_{1} + F_{2}$$

$$F_{2} = F_{1} + F_{2}$$

$$F_{1} = F_{2} + F_{2}$$